Global search perspectives for multiobjective optimization

نویسنده

  • Alberto Lovison
چکیده

Extending the notion of global search to multiobjective optimization is far than straightforward, mainly for the reason that one almost always has to deal with infinite Pareto optima and correspondingly infinite optimal values. Adopting Stephen Smale’s global analysis framework, we highlight the geometrical features of the set of Pareto optima and we are led to consistent notions of global convergence. We formulate then a multiobjective version of a celebrated result by Stephens and Baritompa, about the necessity of generating everywhere dense sample sequences, and describe a globally convergent algorithm in case the Lipschitz constant of the determinant of the Jacobian is known.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SSPMO: A Scatter Search Procedure for Non-Linear Multiobjective Optimization

We describe the development and testing of a metaheuristic procedure, based on the scatter search methodology, for the problem of approximating the efficient frontier of nonlinear multiobjective optimization problems with continuous variables. Recent applications of scatter search have shown its merit as a global optimization technique for single-objective problems. However, the application of ...

متن کامل

Quasi-Newton Methods for Nonconvex Constrained Multiobjective Optimization

Here, a quasi-Newton algorithm for constrained multiobjective optimization is proposed. Under suitable assumptions, global convergence of the algorithm is established.

متن کامل

SSPMO: A Scatter Tabu Search Procedure for Non-Linear Multiobjective Optimization

We describe the development and testing of a metaheuristic procedure, based on the scatter search methodology, for the problem of approximating the efficient frontier of nonlinear multiobjective optimization problems with continuous variables. Recent applications of scatter search have shown its merit as a global optimization technique for single-objective problems. However, the application of ...

متن کامل

Pareto-based Cost Simulated Annealing for Multiobjective Optimization

In this paper, a multiobjective simulated annealing (MOSA) method is introduced and discussed with the multiobjective evolutionary algorithms (MOEAs). Though the simulated annealing is a very powerful search algorithm and has shown good results in various singleobjective optimization fields, it has been seldom used for the multiobjective optimization because it conventionally uses only one sear...

متن کامل

A local multiobjective optimization algorithm using neighborhood field

A new local search algorithm for multiobjective optimization problems is proposed to find the global optima accurately and diversely. This paper models the cooperatively local search as a potential field, which is called neighborhood field model (NFM). Using NFM, a new Multiobjective Neighborhood Field Optimization (MONFO) algorithm is proposed. In MONFO, the neighborhood field can drive each i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Global Optimization

دوره 57  شماره 

صفحات  -

تاریخ انتشار 2013